BOX H VF2O

UNIVERSAL CONTROL PANEL
For gates with 1 three-phase 230VAC motor with frequency converter

INSTRUCTION MANUAL

SMINN

innovative in electronics

COMPONENTS SITUATION

Fig. 1

1. WBAND card socket
2. TRSH radio card socket
3. TEST Run button
4. Connection terminals
5. Double 24VDC power supply
6. Auxiliary output relays
7. Brake relay
8. AC power input fuse
9. High voltage zone 230 VAC
10. Bus capacitors
11. Bus load relays
12. Power transformer

Fig. 2

INDEX

Features 2
Limitations on the use of motor controllers 2
Warnings 2
Installation 3
Important safety instructions for installation 3
Important safety instructions for usage 3
Wiring 4
Setup 6
Maneuver programming 7
Maneuver 8
Activation 8
Maneuver modes 8
Phases 9
Safety test 9
Unlocking 9
Movement 9
Locking 10
Pause 10
Safeties 11
Stop 11
Light barriers 11
Safety edges 12
Current sensor 12
Obstacle detection 13
Encoder 13
Motor 13
Electrical wiring diagram 14
Accesories and peripherals 15
Maneuver 16
Outputs 16
Display 17
Encoder 17
Options 18
Timings 20
Maintenance 22
Error log 23
Absolute encoder wiring 24
Light barrier shielding 24
Parts exploded view 25
Warranty 26
Waste of electrical and electronic devices 26
Technical characteristics 27
CE declaration of conformity 27
Notes 28

Symbols

Relay output (NO contact)

Safety edge
Normally open contact
: Normally closed contact
由
\qquadEarth
Encoder pulses
........................ Encoder pulses

[^0]

FIGURE INDEX

Figure 1 .. 0
Figure 2 .. 0
Figure 3 ... 14
Figure 4 ... 25

FEATURES

The BXH-VF2O universal control panel is designed to form part of a 230VAC threephase motor automation system for a high-speed, ascending, sliding or up-andover door.

The control panel has the following features:

- Control of 1 three-phase 230VAC motor up to 1.5 kW (delta connection).
- Intuitive multi-lingual programming menu via 4 keys and backlit LCD display.
- Absolute encoder support via RS485 from manufacturers SMINN, GFA and Kostal.
- Independent regulation of power and speed in each phase of the manoeuvre.
- Configurable test of safety devices before each opening or closing.
- Three independent key inputs for different activation modes.
- Four programmable potential-free relays with different functions and one relay with 230 V output dedicated to braking.
- Socket for SMINN radio card (6 pins).
- Socket for WBAND card.
- Independent inputs for two strips (resistive or contact), two photocells and a pulsed safety type FSS.
- LEDs indicating the status of the inputs and outputs of the panel.
- Two 24VDC voltage outputs for peripherals (max. 7W each), protected by resettable fuses.
- Optocoupled inputs with high electrical isolation.
- Storage of number of manoeuvres (partial and total) and events to facilitate maintenance.
- Manoeuvre learning system that facilitates commissioning and configuration.
- Obstacle detection with configurable sensitivity by amperometric sensor and/or encoder.
- Industrial box with disconnector, stop button, backlit pushbutton panel and
display and high luminosity manoeuvre status LEDs.
- Wiring via 3 removable cable glands (PG16) and 2 fixed cable glands (PG 9 and PG 7).

LIMITATIONS ON THE USE OF THE CONTROLLER

Use is not guaranteed when installed on equipment other than that specified.
The manufacturer reserves the right to change the specifications of the switchgear and this manual without prior notice. The switchgear must only be handled by specialised and/or suitably instructed personnel.

WARNING

The product must be used for its intended purpose and any other use is considered inappropriate. Packaging and containers must not be disposed of in the environment. Keep products, packaging, containers, documentation, etc. out of the reach of children. Observe applicable local, national and European regulations. The information contained in this document may contain errors which will be corrected in subsequent editions. The manufacturer reserves the right to modify the contents of this document or the product without prior notice.

> SMINN CONTROL PANELS ARE EQUIPPED WITH AN INDICATOR LIGHT THAT LETS US KNOW IF THE EQUIPMENT IS POWERED

[^1]
INSTALLATION

The box is fixed to the wall with four screws, all of them external (See Fig.3).
Drill four holes in the wall, respecting the dimensions of the box and the fixing brackets. Use the screws and plugs supplied.

Pass the cable conduits through the cable glands into the equipment. Observe the safety instructions for installation. Connect the power supply, motor and device cables to the terminals of the terminal strips as indicated on the printed circuit board. Refer to the following sections of the manual for wiring and configuration specific to each element.
Power up the panel and the LCD display will turn on.
For the initial operation check, connect at least the motor, the brake (if necessary) and the limit switches or absolute encoder and use the keys -> to open and <- to close in dead man's mode, checking the operation of the motor (in slow speed and dead man's mode).
Connect the rest of the automation elements and carry out a learning manoeuvre to start up the control panel. After finishing, customise the configuration if necessary.Translated with www.DeepL.com/Translator (free version)

IMPORTANT SAFETY INSTRUCTIONS FOR INSTALLATION

Before installing the controller:

- Check that the gate/blind is in good mechanical condition and properly counterbalanced.
- Remove everything that is not necessary from the environment and switch off the AC power.
- Install the panel at a minimum height of 1.5 m , preferably next to the door.
- Use power and motor cables of suitable cross-section.
- Power the switchgear via a circuit breaker/emergency switch that is easily accessible by the user.

The European door standards EN 12453 and EN 12445 specify minimum levels of protection and safety for industrial,
commercial, garage doors and gates. The moving door must be prevented from making contact with any object or limiting the contact force (e.g. safety edge), and in the case of automatic closing, it is necessary to complement it with a presence detector (e.g. photocell).
Check that the configured safety elements act by means of the LED associated with each of their inputs. The LEDs of the strips and the FSS input will not activate if this security has not been previously activated in the menu (See Fig.1).

Make sure that the safety edge is not activated when the door is completely closed.Once the programming of the manoeuvre and configuration has been completed, test the manoeuvre using the keypad of the box or the appropriate key input to validate that the configuration and operation are correct.

IMPORTANT SAFETY INSTRUCTIONS FOR USE

Once the mechanism has been installed and as a precautionary measure, the user must:

- Keep the control mechanism out of the reach of children.
- Monitor the movement of the door, keeping the area clear of people and objects.
- Exercise caution when operating the door manually (unlocked) as it may move uncontrollably due to the weight of the door, the condition of the fixings, springs and counterweights.

If a malfunction of the system is observed, the user should IMMEDIATELY contact the technical support service. The mechanism must not be used as it may cause damage.

WIRING

The panel is supplied with 230 VAC 50 Hz via terminals 1 and 2 . The earth connection is made at terminal 3 .

The control unit can control a three-phase 230VAC motor. Connect the three phases to terminals U, V and W and connect the earth terminal T to the motor housing. If the direction of rotation is incorrect, swap two of the phases.

NOTE: In order to comply with European standards regarding electromagnetic interference, it is mandatory to pass the motor cables back through the ferrite core included with the product.

The control unit has a relay with 230V output dedicated to the brake function.

The panel has four potential-free relay contacts normally open to perform different functions such as lamp control, traffic lights, electric lock, etc... These relays can withstand 16A over 24 VDC or 230VAC.

At terminals 14, 15 and 16, the panel has two $24 \mathrm{VDC}-7 \mathrm{VA}$ voltage outputs for peripherals protected by resettable fuses for powering external devices.
Additionally, terminal 17 serves as a specific negative for photocell testing. According to standard.

Terminal 18 allows the connection of an FSS type safety device. Terminals 20 and 21 allow the connection of resistive or contact strips. Terminals 22 and 23 allow the connection of normally closed safety circuits. Terminal 24 serves for the connection of the opening limit switch and terminal 25 for the closing limit switch.

Terminals 19 and 26 serve as common terminals for the connection of all the above elements.NOTE: The limit switches must be connected unless an absolute encoder is used.

The panel supports the connection of an RS485 absolute encoder via a quick connector or a 4-terminal terminal block. If the quick connector is not used, leave the supplied jumper connector.

When using the terminal block, terminals 27 and 30 provide a 12VDC power supply to an absolute encoder. Terminals 28 and 29 are used to connect the RS485 signals of the encoder. For correct operation it is necessary to connect each terminal to the encoder terminal marked with the same symbol (A to A and B to B).

Terminals 31 and 32 are used for the connection of a normally closed safety device for emergency stop, such as an emergency stop mushroom.

The control unit has three independent key inputs which are configured with different functions depending on the selected operating mode.

Normally, input LL1 serves as an opening command and input LL2 serves as a closing or pedestrian opening command. Terminal 36 serves as common for all key inputs.

The radio card socket allows a SMINN radio card (6 pins) to be plugged in, enabling the opening command to be given via radio transmitters.

The W-BAND card socket allows a WBAND RX-E band receiver card to be plugged in, allowing up to 6 bands to be managed without wiring a receiver.

CONFIGURATION

To facilitate the configuration and maintenance of the panel, it has an advanced menu system accessible by means of an integrated 4-key keypad and data presentation on a backlit LCD display that allows the panel to be configured simply, quickly and intuitively.
Press the BACK + ENTER keys simultaneously to access the configuration menu. The LCD will light up. To move through the menu, the panel has 4 keys which are:
BACK (exit)
ENTER (accept)
<- (back)
-> (forward)
While using the configuration menu, the two lines of the screen are normally used; on one of them, the symbols < and > will appear at the ends to indicate that the user is navigating on that line. Navigating on the top line navigates between menus and parameters (with the current value, if applicable, appearing on the bottom line). Navigating on the bottom line navigates between the possible values of the selected parameter, shown on the top line.
Therefore, the <- / -> keys are used to move between the elements of the current navigation level, the ENTER key is used to select an element or validate the selection of a value, and the BACK key is used to cancel the modification of a parameter and, in general, to go backwards.

Temporarily and depending on its use, the installation must be subjected to a complete operation test by qualified personnel in order to detect any signs of wear or deterioration.

If for any reason the panel needs to be repaired, contact the manufacturer or the nearest official service centre.
Once the manoeuvre has been programmed, we must ensure that the power and soft stop settings are suitable for compliance with standard EN 12453:2018+A1:2022, taking the measurements in accordance with the method described in the standard. See force graph.
If, due to the characteristics of the installation, these values are not met, additional protection elements must be installed.

The dynamic force Fd must not exceed the following measurements:
$<400 \mathrm{~N}$ in spaces between $5-50 \mathrm{~cm}$
<1400N in spaces larger than 50cm

Force diagram
Fd: Dynamic force
FS: Static force

MANOEUVER PROG.

The control panel has a configuration wizard that allows you to select the most important parameters and start up the control panel quickly.
To start the wizard, with the door closed, enter the configuration menu by pressing BACK+ENTER, the parameter BiTE TYFE will appear.
Press ENTER and use the <-/-> keys to scroll through the options until the desired type is selected. Press ENTER to validate. Then press -> and HeldIOE VOE will appear.
Press ENTER to access the submenu and use the <-/ -> keys to select the desired mode. Press ENTER to validate. Then press -> until the NIINTENAWE menu appears. Press ENTER to access the submenu. Press -> to select the OFED and/orLLEEcommands.
In either command, pressing ENTER will operate the door (opening or closing) in deadman mode at soft stop speed and power. In this way it is checked that the connections of the phases to the motor are correctly made and the direction of rotation of the motor is correct, or not, in which case the parameter IPHEFTT HOTGR can be used or any 2 phases can be swapped between them.
Once these steps have been carried out, press -> until FFDG 1 HELUEF appears on the screen and accept by pressing ENTER.
After this, the panel will ask one by one for the vital parameters of the configuration. Choose the desired value for each option with the <- and -> keys and press ENTER to accept and continue or BACK to go back.
If the door interrupts the photocell installed at input S1 during its movement, it is possible to configure the panel to learn the inhibition interval automatically by setting the parameter IPHIE. SEDi parameter to YES

In the case of using an absolute encoder, the panel will instruct you to position the door at the opening and closing points using the <- and -> keys to memorise their positions.
After configuring the basic parameters,
the panel will indicate that after pressing ENTER again, the learning manoeuvre will begin.
From here you can carry out the following steps using the ENTER key, the LL1 key input, or by means of a radio transmitter:

- Press to start opening.
- Press to start soft stop (if the parameter SIFT STOF is activated).
- Wait until the opening limit switch is reached (the door will stop by itself).
- Press to start closing.
- Press to start soft stop (if parameter GIT STIF is activated).
- Wait until the closing limit switch is reached (the door will stop by itself).
- The control panel will record by default both the opening and closing time (with a 10% increment) as a safety measure in case of failure in the limit switches.

The programming manoeuvre will change the following parameters:

- TOTHL FULSES
- STFTSTOF FF
- STFT STOPCR
- 111 SERSIE.
- M1 ENCSER
- M1 LIM. FFES.
- DFENIPG TIHE (with a 10% increase)
- DLDEIME TINE (with a 10% increase)
- FOLARITYENC
- ERC AES FOS I (with absolute encoder)
- ENC AES FISF (with absolute encoder)

MANOEUVER

ACTIVATION

The key inputs (marked LL1, LL2 and LL3) and a radio card installed in the radio socket can be used to start a manoeuvre when the control panel is idle.

The functions of the key inputs LL1, LL2 and the radio card are determined by the selected manoeuvre mode, while input LL3 can be set separately to operate differently (using the FOLFFITY' and 'TDE parameters within the LL3 menu). It is possible to disable any of the LL1, LL2 or LL3 inputs using the LLI ELIDCK, LL2 ELDCK or $L S$ ELDEK parameters, so that any stimulus on these inputs will be ignored.
Each input is assigned a transit direction to enable the use of discriminating traffic lights. LL1, LL2, and the radio card are used for the incoming transit direction and LL3 for the outgoing transit direction.
NOTE: The radio card operates by default the same as LL1 unless the parameter
FAII HLT STOF is activated, in which case it shall operate in alternate stop (regardless of the general manoeuvre mode selected).

MANOEUVRE MODES

The MHENUEF VWEE parameter sets the functions that the key and radio inputs perform.

STANDARD

In STFlilifil mode, Ll1 will give an open command if the door is closed and a close command if the door is open and at rest. LL2 will work in the same way except that the opening will be in pedestrian mode. None of the keys perform any function while the door is moving unless the parameter IPWEF DN $K E Y$ is activated, in which case during closing LL1 and LL2 will cause a soft manoeuvre inversion to be performed. In this mode, HTO DLDIMG is activated by default, although in IFTIOW by accessing this command, it can be deactivated by selecting

OPEN/CLOSE

The OFEPMCLIEE mode uses LL1 as the opening command and LL2 as the closing command. When the door is in motion the opposite direction input will cause a smooth reversal of manoeuvre (without passing through stop). In this mode, HITD CLDE is disabled by default, although in OFTIOW, by accessing this command it can be activated by selecting 'rES.

ALT. STOP

The fleT STOP mode works in the same way as the STH\|DFD mode, except that if LL1 or LL2 is used while the door is moving, it stops. The next press will make the door continue the manoeuvre in the opposite direction to the previous one. In this mode, the HITU CLISE is disabled by default, although in UFTIIW, by accessing this command, it can be activated by selecting YES

DEADMAN

The पEF[相性 mode only allows the door to move while the LL1 or radio input is active (opening) or the LL2 input is active (closing). The manoeuvre is interrupted when the input in use is deactivated. In this mode, the safeties only pause the manoeuvre.

SEMI. DEADMAN

 opening in the normal way when using LL1 or LL2, but requires using either of the inputs in deadman mode to close.

AUXILIARY DEADMAN

The parameter HM CEFD Vhill parameter allows the panel to temporarily operate in deadman mode when one of the safeties fails the test, allowing the door to be opened in case of problems. When this option is activated, in the event of a failure, simply press and hold the usual key or radio input for a few seconds.

PHASES

SAFETY TESTS

The safety tests phase is performed in the beginning of every maneuver before moving the gate. The controller first checks for obstructed safeties (corresponding led off in the board) that are relevant to the maneuver. If there is any obstructed safety it waits for them to enter idle state and will show a message in the display to this effect. Then the board checks the resistive values of safety edges and performs a test procedure on light barriers removing power from the transmitter to check the system is in order.

UNLOCKING

The unlocking phase performs many different functions simultaneosly before starting the movement phase:

- Activates the garage light relay during the time interval specified by the bifis LIGHT T parameter. This paremeter can be set to any time from 1 sec . to 240 sec., thus saving the need to use an external timer.
- Activates the electrolock relay if any of the relays is configured as such and the ELETTMLDCK parameter is set with a time interval.
- When the electrolock is activated and the maneuver will open the gate the controler performs a reversing stroke in soft stop speed (OF GIFT UEL parameter) with normal power (IF NOFHILL FOH parameter) for a duration specified by the FEUEFS. STFOE parameter.
- Performs preflashing through a relay configured for light beacon during the time interval specified by the FFEFLAEH IP T parameter for opening and the FFEFLFBH IL T for closing. Preflashing is managed following the mode specified by the FFEFLFEH YOEE parameter. If the FLAGHING SEI. parameter is set preflashing will be performed through a relay configured as red semaphore light.

MOVEMENT

The movement phase comprises the actual gate movement and management of the safety devices. First the red semaphore light is activated if any relay is set as such and the maneuver counters are incremented (once per gate movement direction). The electrolock, if activated in the previous phase, is held active until the time specified by the ELECTROLOCK parameter passes. If there is a relay set up as a beacon light it will be managed following the mode set in the FLEBH VITE 10U parameter.
Motor speed and power are adjusted in different phases:

- Acceleration ramp: The acceleration ramp is performed at maximum power and goes from stopped motor to the transit speed in the time specified by the OF FCDE FAll: parameter for opening and CL ACOEL Fiflif for closing. The shorter the ramp time the more abrupt the speed change is, and the longer the ramp, softer the speed change.
- Transit: In transit the motor spins with the the speed and power adequate to the maneuver. Most maneuvers are performed in normal speed (IF NFFHFL UEL for opening and CL MOFHWL UEL for closing) and power (IP PDFHALL FOH for opening and CL MOFHPL FOH for closing). Deadman maneuvers before the first learning maneuver are performed in soft stop speed (DF GIFT UEL for opening and CL SDFT UEL for closing) and power (IF GIFT FOH for opening and CL STFT FOHfor closing).
- Soft stop ramp: If the SOFT STOP parameter is set, when the gate reaches the position set as a percentage of the gate limits (IF SIFT STIF for opening or CL SUFT STUF for closing), the controller starts the soft stop phase. The soft stop ramp regulates the speed and power from the ones used in transit to the the ones set for the soft stop phase (OF SIFT UEL and OF SOFT FOH for opening or CL SIFT UEL and CL SOFT FOHf for closing) and lasts the time set in the GF GIFT Fill|F parameter for opening or the LL SIFT FAFF parameter for closing.
- Soft stop: if the GIFT STOF parameter is set the motor will spin using the soft stop speed and power (IF GIFT UFL and IF SIFT FOHfor opening or LL SIF UEL andCL SOFT FOHfor closing).
- Decceleration before limit: if the [IEL OF HFBIM parameter when closing or the COEL CL MFGIM when closing are greater than zero the controller will progressively deccelerate when the remaining gate movement reaches the margin specified by the corresponding parameter, reaching the end with the speed specified by the CDEL OF UFL parameter when opening or the [CE CL VEL parameter when closing.
- Decceleration ramp: when the gate reaches its end position (FEDEST LIM. parameter for pedestrian opening maneuvers) or the maneuver time runs out a final decceleration ramp to stop the motor is performed. The ramp lasts the time specified by the IP GECT PANP parameter when opening or the Q [ECI: Fitlip parameter whenclosing. If the motor must be stopped immediately the ramp time should be set to zero seconds.

The movement phase finishes either because the maneuver time runs out, a limit switch has been reached, the programmed encoder position has been reached (mES ENG I FIS and FES ENL F FUS parameters) or, in pedestrian mode, the gate reaches the configured position (FELEST LIM parameter). The maneuver time is set in the OFEN TIFE parameter for opening and CLOE TIHE parameter for
closing. When the maneuver is inverted the controller calculates the needed time using the current gate position as reference, If the gate does not reach its end point in this situation it is possible to apply some extra time (EXTFiH TIHE parameter).

Safeties can alter maneuvers (inversion, safety stop...). Ending a maneuver because of a safety is considered a cancellation and can be followed automatically by another maneuver (inversions).

When the opening movement phase ends succesfully, the red semaphore light is deactivated and the green semaphore light is activated.

LOCKING

The locking phase when closing, if an electrolock is installed, performs a final stroke in soft stop speed (CL GTT UFL) and in normal power (CL MOFHthL FOH parameter) lasting the time specified by the FIP竩 STFIRE parameter.

PAUSE

The pause phase is performed after opening if the HTO CLEE parameter is set. This phase lasts the time specified by the MUTO CLOSE T parameter for normal maneuvers, the FITO FED T parameter for pedestrian maneuvers and the FAST FHOTO LIEE parameter for light barrier inversions. If a light beacon relay is configured it will follow the configuration set in the FLFH HOE FHE parameter. When the pause ends a new closing maneuver starts.
 key switch activation will terminate the pause phase. If GFTIOHALL FUTO is not set but KEY RES. FUTO is set, key switch inputs will restart the pause timer, also when held.

If the CLISE OW EEFll parameter is set with an specific time, a light barrier obstruction during pause will reset the timer to the value set in the parameter.

SAFETIES

The controller supports many safety devices that can affect the maneuver: STOP, light barriers, safety edges, FSS, current sensor and encoder.

STOP

The STOP input supports a normally closed contact for emergency stop. In case no device is installed the terminals should be bridged (led off) for the controller to work.

Opening the stop contact will make the motor stop immediately and will cancel the current maneuver no matter in which phase it is currently in.

LIGHT BARRIERS

The controller has two separate inputs for light barrier use that can be independtly enabled and configured. These inputs work as normally closed contacts, so in case of more than two light barriers they should be connected in series. If more than one light barrier share the same board input the same configuration will apply to all of them.

To enable a light barrier input first the input needs to be enabled using the BEAM 1 parameter or the EEFHI 2 parameter. Once the input is enabled it is possible to configure the safety test and the behavior both when opening and when closing.

To activate the safety test the TEST EEFH1 1 parameter or the TEST EEFVI 2 parameter must be used. Once set, the default testing strategy is to test both before opening and closing. It is possible to adjust this strategy using the TEST EEFH1 1 OF, TEST EEFH1 QL, TEST EEHV 2 OF and TEST EEH 2 G parameters.
To perform the safety test it is neccesary to interrupt the power line to the peripheral or, in some cases, provide a test impulse. For maximum flexibility the controller provides two ways of performing the test: terminal 18 can be used as DC negative supply for testable devices or one of the dry relay contacts can be used using the TEST function.
Below all possible values for EEFll 1 OFER EEAN 1 CLGE, EEAN 2 DFEN and BEHM 2 CLDE are detailed.

10	The light barrier is ignored.
Fhise	The light barrier pauses the maneuver while obstructed. When unobstructed, the controller waits for three seconds and resumes the maneuver.
INWERT	The light barrier inverts the maneuver direction.
STOF	The light barrier stops and cancels the maneuver.
SHORT IRN.	The light barrier inverts the maneuver direction during the time set in the SHORT INU. T. parameter and then stops and cancels the maneuver.
DELFHED IPU	When the light barrier is unobstructed the gatye stops, waits during the time set in the [EL. IPU. T. parameter and then inverts the maneuver.

MANEUVER

SAFETY EDGES

The panel has two inputs for safety edges, two inputs associated with the plug-in WBAND card and one input for FSS type safety that can be enabled and configured independently. The band inputs of the panel work by monitoring the connected resistive value and support 8 K 2 or 4 K 1 resistive bands and contact bands, either normally open or normally closed. If you want to connect several strips to the same input, it is necessary to connect them in series if they are normally closed contacts, and in parallel if they are normally open or resistive contacts. In the case of resistive strips, the panel only supports two connected in parallel on the same input, configuring the input for 4 K 1 .
The FSS input checks that the connected security modulates at the appropriate frequency.In order to use a band input, the
plug-in card inputs or the FSS input, it is necessary to configure the input by modifying the parameter ELIE 1, EIDE 2 , $H E 1, H E$ or $F S$

The possible options for parameters E[IE 1 AFEF, EDGE 1 GLDEE EDGE 2 AFEF and ELEE 2 CLOEE, $H E 1$ AFEFiand $H E L D E E$ $H E 2$ FFEF and $H E 2$ CLESE, FSS FFEF and FSS CLISE are listed below, with the selected action being applied when safety is activated in the chosen direction.

PUI	The safety edge is ignored.
IRERT	The safety edge reverses direction until the end of the manoeuvre.
STUF	The safety edge stops and cancels the maneuver.
SHRT IRU.	The safety edge inverts the maneuver direction during the time set in the SHIT IMU. T. parameter and then stops and cancels the maneuver.

CURRENT SENSOR

The BOX H Vf2O controller monitors the current draw on each motor phase in real time so it can be displayed in the LCD screen and to implement three different protections:

- Obstacle detection: When the controller detects an abrupt rise in motor current draw or detects that it is higher than a configurable limit (INI OEST. LIM) during a short span of time the obstacle detection safety activates. This safety only works if the $M 1 \operatorname{SEPSIB}$. parameter is 1 or greater; this parameter set the sensitivity to rises in current draw, being 1 the lowest and 9 the highest. If this safety is activated the controller will log an error for future reference. NOTE: This safety does not work during speed ramps and performs best when the motor spins with reduced power.
- Overcurrent protection: If the controIler detects that the motor current draw rises above a limit set in the LIMIT parameter for a brief span of time the maneuver will be cancelled immediately and an error will be logged for future reference.
- Shortcircuit protection: If the controller detects that the motor current draw rises above an internal limit close to the maximum supported by the board the maneuver is cancelled immediately and an error is logged for future reference.

OBSTACLE DETECTION

The controller has many means to detect an obstacle. The behaviour of the gate when one is encountered is set by the FIEH SEC. DFEN and FISH SEC. DLIEE parameters in a similar fashion to safety edges (see table above).

ENCODER

When the encoder is enabled it can be used as a safety measure too. The controIler monitors the time lapse between position changes and implements two protections::

- Obstacle detection: If the controller detects an abrupt rise in time between position changes the obstacle detection safety activates. This safety only works if the ENS SER. parameter is 1 or greater; this parameter set the sensitivity to rises in current draw, being 1 the lowest and 9 the highest. If this safety is activated the controller will log an error for future reference.. NOTE: This safety does not work during speed ramps.
- Locking detection: If the controller tries to make the motor spin but no significative position change is detected the maneuver is cancelled to avoid damage and an error is logged for future reference.

MOTOR

The BOX H VF2O allows independent control of speed and power for a 230 VAC three-phase motor (delta wiring). Speed can be set between 10 Hz (Hertz) and 100 Hz (OF WOFHL VEL, GL MWFHL VEL, OF GIFT UEL and CL SOFT UEL parameters) and power can be set from 30% to 100\% (OF WOFHL FOH, CL WOFHL FOH, OF SOFT FOH and CL SOF FOH

It is important to consider that threephase motors are usually designed with 50 Hz and 100% power in mind. Using these values is equivalent to powering the motor with direct three-phase power. Frequency modification, specially close to the limits, can make the motor spin badly, cause higher power drain and general malfunction. Also, reducing the delivered power can make the motor spin slower than intended or general malfunction. It is recommended to test thoroughly the selected parameter values.

The controller has two complementary brake systems: electrical brake and electromechanical brake. The electrical brake is performed by applying DC power in the motor phases and practicaly locks the motor in place, eliminating inertia and relieving the electromechanical brake from unneeded friction. The electromechanical brake is activated through one of the output relays and primarily serves the function of locking the motor in place when the gate is idle.

The electrical brake strength can be regulated using the EFFHE FOH OF and EFitle FOH LL parameters. This parameters accepet any value from 0 to 4,0 being electrical brake disabled and 4 being the highest power setting. NOTE: It is not recommended to change the brake strength if not actually needed, specially setting level 4 as it can damage the motor.

ELECTRICAL WIRING DIAGRAM

1	230VAC phase
2	230VAC neutral
3	Earth terminal
\cup	U motor phase
V	\checkmark motor phase
W	W motor phase
T	Motor earth terminal
4-5	Brake output contact 230V
6-7	RL2 output relay
8-9	RL3 output relay
10-11	RL4 output relay
12-13	RL5 output relay
$\begin{aligned} & 14 \\ & 15 \\ & 16 \end{aligned}$	24 VAC 12 V .A. power output
17	Light barrier test
18	FSS
19	Input common
20	Safety edge 1-R8K2 / NC
21	Safety edge 2 - R8K2 / NC
22	Light barrier 1 NC
23	Light barrier 2 NC
24	Opening limit switch
25	Closing limit switch
26	Input common
27	Encoder power positive
28	Input encoder A
29	Input encoder B
30	Encoder power negative
31 32	STOP (NA contact)
33	Input LL1
34	Input LL2
35	Input LL3
36	Input common

Fig. 3

LIGHT BARRIER POWER DIAGRAM

See page 24 for correct shielding of the receiver

The negative of the light barrier transmitter mu to facilitate the light barrier test function.

MANOEUVER

OUTPUTS

The panel has four independently configurable outputs that allow the appropriate external elements to be configured for each installation. Each output has its own menu (called $\operatorname{FLL} 2, F \operatorname{FL}, F \operatorname{LL} 4$ and $F \operatorname{LL}$) and within each one there are two parameters: FOLFFITY andFE FHVDE
FOLFRITY: Allows configuring the output polarity between MO DOUTHCT (normally open) and NC CDTFCT (normally closed). It is important to consider that the physical relay contact available in the terminal strip is normally open, so if the board is unpowered the relay will always open the contact no matter the configuration..
FEL Fi VIDE: Allows selecting the function each relay will perform.

RELAY - GARAGE LIGHT

The GAFHE LIGHT mode uses the relay to deliver power or a signal to a device each time a maneuver begins during the time span specified by GiFG LIGHT T parameter.

RELAY - COURTESY LIGHT

The COIPTESY LIGHT mode works in the same way as the GFFHE LIGHT mode, forcing it to switch off at the end of the manoeuvre.

RELAY - FLASH LAMP

The FLisH Lefl|F' mode uses the relay to deliver power to a beacon light during the unlocking phase (preflashing), the movement phase and during pause. It is possible to modify the behavior of the output in each phase (off, intermitent or on) using the FFEFLFGH VIDE, FLFBH VINE

RELAY - BRAKE

The EFfittE mode uses the relay to unlock or lock the electromechanical brake of the motor. The brake is released just before spinning the motor and is lock immediately after stopping it.

RELAY - MAINTENANCE

 signal or power an external device when the maneuver partial counter rises above the limit set in the NAIMT. LIM. parameter.

RELAY - SAFETY TEST

The SEC. TEST mode performs a safety test on devices that are powered externally or that need a test signal. The controller will activate the relay to perform the test and deactivate it when the safety switches state.

RELAY - ELECTROLOCK

The ELECTROLOCK mode activates an electrolock before opening the gate. Setting this mode for a relay enables other parameters related to the electrolock function (EIECTFDLDCK, FEUEFS. STFDEE, FIHAL STFOME).

RELAY - RED SEMAPH

The FED LIGHT IN and FED LIGHT OUT modes use a relay to activate a red semaphore light for a given transit direction. If the FLABHING SEl. parameter is set preflashing will be performed in this relay too.

RELAY - GREEN SEMAPH

The GFEEN LIGHT IN and GFEEP LIG. OIT modes use a relay to activate a green semaphore light for a given transit direction.

RELAY - GATE STATE

The GiTE CLOSED mode activates the relay while the gate is completely closed.
The GITE OFERED mode activates the relay while the gate is completely open.
The GTE OFEAIRG mode activates the relay while the gate is opening.
The GitE CLEING mode activates the relay while the gate is closing.

RELAY - IN PAUSE

The IN Fh ${ }^{\text {P }}$ SE mode activates the relay while the maneuver is in the pause phase.

RELAY - POSITIONAL

The IHFILSE FOS. mode activates the relay on a timed basis for the time set in parameter T IVFULS FUS when passing through the chosen percentage position during the opening manoeuvre.
The DUIT FOE mode switches the state of the relay each time it passes through the chosen percentage position.

The FEFHIFPOS mode activates the relay as long as the door is approximately in the chosen percentage position.
The position of each relay can be chosen using the FELHY FISITIION parameter.

DISPLAY

The LCD display shows during maneuver many useful runtime values easing maintenance and initial installation.

1. Current phase
2. Controller temperature
3. Input inhibition indication
4. Bus voltage
5. Real-time current draw
6. Percentage-based gate position / Remaining pause time.
7. Maneuver maximum current draw.

When idle, the controller might show four E in the display borders to indicate there are one or more logged errors. When entering the menu the controller will show one by one the logged error, waiting for ENTER to be pressed n between. NOTE: The controller will still work normally even if there are logged errors.

ENCODER

It is possible to use an absolute encoder via RS485 bus (ENODER parameter) to control the gate position.
The learning maneuver automatically detects the correct encoder polarity. Before the actual learning maneuver the instaler is prompted to move the gate to the opening and closing positions to learn their encoder values. These positions can be adjusted after the learning maneuver
 parameters.
For more information on safety related encoder settigns check page 13.

OPTIONS

	TEXTO LCD	POR ${ }_{\text {VALOR }}$	PAGINAS
AUTOMATIC CLOSING Enables automatic closing after the pause phase	HITO CLIEE	YES	8,10
FAST LIGHT BARRIER CLOSING The pause after a photocell reversal lasts for the time set as photocell closure. Only visible if CLISE 	FAGT FHOTO	10	10
OPTIONAL AUTO Terminates the pause phase with an impulse. Only visible if $\operatorname{HTOLDEE}$ is enabled	OPTIOPdfL HITO	10	10
AUTO DELAY ON KEY Restarts the pause phase with each comand impulse. Only visible if GPTIOddL HUTO is disabled and FITU CLEE is enabled	KEY FES. FUTO	YES	10
AUTOMATIC CLOSING WHEN IDLE With automatic closing, if the door is stationary and not closed, a manoeuvre is forced to close the door.	ILEE HUTO CLOS	YES	
BEAM 1 / 2 Enables control of each of the light barrier inputs.	EEFH1 EEfll 2	$\begin{aligned} & \mathrm{NO} \\ & \mathrm{NO} \end{aligned}$	11
TEST BEAM 1 / 2 Enables safety test on the connected light barrier	TEST EEFH1 1 TEST EEFH 2	$\begin{aligned} & \mathrm{NO} \\ & \mathrm{NO} \end{aligned}$	11
TEST BEAM 1 / 2 OPENING/CLOSING Enables the light barrier safety test before a maneuver in the corresponding direction.	TEST EEFH11 HP TEST EEFHIL CR TEST EEFHT AF TEST EEFHIT OR	HO PIO PIO PH	11
LIGHT BARRIER 1 / 2 MODE Establishes the behaviour of the light barrier when opening or closing. Options: WD / FHLSE / IRMERT / STOF / SHORT IPU. / DELFEE IRU.	EEFH1 1 OFEN EEFH1 1 CLOSE EEFH12 OFEN EEFH12 LLDSE	HO IPNEFT P10 IPNEFT	11
EDGE 1 / 2 Enables control of each safety edge input. Supports resistive and contact safety edges. 	EDGE 1 EnGE 2	$\begin{aligned} & \mathrm{NO} \\ & \mathrm{NOO} \end{aligned}$	12
FSS / WB1 / WB2 Enables the FSS security inputs and WBAND plug-in card.	FS $1+\mathrm{BI}$ $H E 2$	10 NH 1 HO	12
EDGES MODE OPEN / CLOSE Establishes the behaviour of each safety edge when opening or closing. Options: $\mathrm{HO} / \mathrm{STOF}$ / SHORT IRU. / IPNEFT	ELGEME OFEN EnGE/HE CLGE FSS OFEN FSS DLOE	NO IPMEFT NO IPMEFT	12
OBSTACLE DETECTION OPEN / CLOSE Establishes the behaviour of the obstacle detection system when opening or closing. Options: HO / STOF / SHORT IRU. / IPNEFT	FISH SEC. OFEN FISH SEC. CLIGE	STOP SHORT IRU.	12
SOFT STOP Enables soft stop	GOFT STOP	YES	7,10
POWER RETURN CLOSING After a power failure it causes the door to close if it is not closed.	CLISE ON EOOT	1.10	

	TEXTO LCD		Paginas
PREFLASH MODE Establishes the behaviour of the light beacon during the unlocking phase. Options: WO / INTEFHITENCE / ON	FFEFLAEH HOCE	INTEFAIITTENCE	9,16
FLASH MODE MOVEMENT Establishes the behaviour of the light beacon during the movement phase. Options: NO / INTEFHITTENEE / ON	FLAGH HIDE HOU	INTEFAITTENCE	9,16
FLASH MODE PAUSE Establishes the behaviour of the light beacon during the pause phase. Options: NO/ INTEFHITTENEE / OW	FLich ficie	NO	10,16
FLASHING SEMAPHORE Uses the red semaphore light for preflashing	FLAEHING SEl.	NOL	9,16
AUXILIARY DEAD MAN If the safety test phase detects any failure the mode swtiches to dead man temporally.		NOL	8
ENCODER Enables maneuver control via encoder 	ENCOEEF	N010	17
ENCODER POLARITY Establishes the spin direction interpreted by the encoder. Options : NOFFHFL / IMMERTED	ENU FOLARITY	NOFPHALL	7
OPENING LIMIT SWITCH Enables the opening limit switch input when encoder is selected.	OFEN LS	N0	
CLOSING LIMIT SWITCH Enables the closinglimit switch input when encoder is selected.	CLOEE LS	P/0	
BUTTON PANEL LOCKING / LL1/LL2/LL3 Locking of the key activation inputs LL1 / LL2 /LLL3 and/or the button panel. The key locks are only visible when the password is activated	LX ELIOK EXT OF ELOOK EXT CL ELODK	$\begin{aligned} & \mathrm{NO} \\ & \mathrm{NO} \\ & \mathrm{NO} \end{aligned}$	8
RADIO ALTERNATING STOP Makes the radio card input work in alternating stop mode.	Fitioio fli STOF	N010	8
RLI/RL2/RL3/RL4/RL5 POLARITY Establishes the polarity of each relay output. Options: WO CDITACT / NE DNTACT	FLYFOLARITY	NOL CONTECT	16
RL2/RL3/RL4/RL5 RELAY MODE Establishes the function of each relay. Options: See page 14	Fil2fRELAM' MOCE R1SFRELAM' HOCE Fill/firlimy Hice FLLSFPELAM' HOCE	GFPGE LIGHT GHTE CLISED GATE OPERED SEC. TEST	16
LL3 POLARITY Establishes the polarity of the LL3 input Options: MA CONTPCT / NE CONTACT	LЗFPOLARITY	NO CONTACT	8
LL3 MODE Establishes the function of the LL3 input 	LSYTILE	Pl.T STIF	8
INVERT MOTOR Establishes the spin direction of the motor.	INWERTIF FIOTOR	NOL	7

TIMINGS

	LCD TEXT	default VALUE	ADJUSTMENT	PAGES
Opening time	OFEN TIME	15 sec .	O-1800 sec.	7,10
Closing time	CLISE TIVE	15 sec .	O-1800 sec.	7,10
Automatic closing time	HIT CLIEE T	15 sec .	1-60000 sec.	10
End position of pedestrian maneuver	FELEST LIH.	50\%	0-100 \%	10
Pedestrian automatic closing time	HITI FED T	15 sec .	$1-60000 \mathrm{sec}$.	10
Opening soft stop position	OF STT STOF	0\%	0-100 \%	7,10
Closing soft stop position	CLSTT STOF	0\%	0-100 \%	7,10
Extra time	EXTFH TIPE	O sec.	O-1800 sec.	10
Close on beam time	CLISE DN EEHV淔	NO	NO/2-240 sec.	10,16
Delayed inversion time	[EL. IPN. T.	5 sec.	0-1800 seg.	11
Short inversion time	SHIFT IPH. T.	1,5 sec.	0-100 sec.	11,12
Electrolock time	EFETFTE LOKK	NO	NO/1-10 sec.	9,16
Reversing stroke time	FEVEFS . STHOE	O sec.	O-1800 sec.	16
Final stroke time	FIPHL STFIOE	O sec.	O-1800 sec.	16
Opening motor normal power	OP MOFHiAL FOH	100\%	30-100 \%	9,13
Closing motor normal power	CL PGFHidL FOH	80\%	30-100 \%	9,10,13
Opening motor normal speed	OF PHPFHEL MEL	50 Hz	$10-100 \mathrm{~Hz}$	9,13
Closing motor normal speed		50 Hz	$10-100 \mathrm{~Hz}$	9,13
Opening motor soft power	OF GIFT FOH	80\%	30-100 \%	9,10,13
Closing motor soft power	CL GTT FO+	80\%	30-100 \%	9,10,13
Opening motor soft speed	DF GOFT UEL	25 Hz	$10-100 \mathrm{~Hz}$	9,10,13
Closing motor soft speed	CL GOFT UEL	25 Hz	$10-100 \mathrm{~Hz}$	9,10,13
Start-up power assistance factor	$\mathrm{FO}+\mathrm{EF}$ ELIST	0\%	0-40\%	

	LCD text	DEFAULIT	ADJUSTMENT	PAGES
Opening acceleration ramp time	OF ACOEL Fitl\|	1,5 sec.	0-100 sec.	9
Closing acceleration ramp time	Q focel mifl	1,5 sec.	0-100 sec.	9
Opening soft stop ramp time	OF SOFT RAFl\|	1,5 sec.	0-100 sec.	10
Closing soft stop ramp time		1,5 sec.	0-100 sec.	10
Opening decceleration ramp time	Of Lect matil	1 sec .	0-100 sec.	10
Closing decceleration ramp time	L Lect matil	1 sec .	0-100 sec.	10
Opening decceleration final speed	COEL OP VEL	10 Hz	$\mathrm{O}-100 \mathrm{~Hz}$	10
Closing decceleration final speed	CGEL Ll vel	10 Hz	$0-100 \mathrm{~Hz}$	10
Opening decceleration margin	[CEL OF HAFGIN	15\%	0-15 \%	10
Closing decceleration margin	[GEL CL HFBGIN	15\%	0-15 \%	10
Absolute encoder closed position	AES ERL I FOS	0	0-65536	7,10,17
Absolute encoder opened position	AES ENC: F FOS	0	0-65536	7,10,17
Opening preflashing time	FFEFLFGH OF T	0 sec .	0-1800 sec.	9
Closing preflashing time	FFFFLfGH LL T	O sec.	0-1800 sec.	9
Garage light time	Gifig Light T	0 sec .	0-60000 sec.	9,16
Relay pulse time in position	FOS IfFULSE T	1 sec	0-240 sec.	17
Opening electric brake power	EFitile FOH OF	2	0-4	13
Closing electric brake power	EFitile ford CL	2	0-4	13
Current sensing obstacle detection sensitivity	1 HL SEMSIE.	5	0-9	7,12,23
Encoder obstacle detection sensitivity	H1 ENC SERS.	5	0-9	7,13
Obstacle detection current limit	111 UEST. LIH.	3 A	0-16 A	7,12,23
Overcurrent limit	OE. LIMIT	10 A	0-16 A	12

MAINTENANCE

This menu allows checking maneuver counters, input status, setting a maintenance password and loading default values.

VERSION

Shows the firmware version of the controller.

PARTIAL COUNTER

Shows the number of maneuvers performed since the last counter reset..Pressing ENTER will prompt for counter reset..

TOTAL COUNTER

Shows the number of maneuvers performed since the controller was last reset to default values.

COUNTERS

It displays multiple counters such as the number of manoeuvres carried out since the panel was started up, the time it has been switched on, the motor running time, the number of reversals, the number of stops and the number of actuations of all the existing inputs. All these counters can be reset by pressing ENTER on each of them.

INPUT STATUS

Displays the status of all inputs that are activated and enabled.

RL1/RL2/RL3/RL4/RL5

These options allow activating in dead man mode all the relay outputs to test connected peripherals.

OPEN/CLOSE

From this menu it is possible to control the motor in dead man mode with the ENTER key. This function ignores most of the controller safety measures so its use is only recommended to check the spin direction. It is recommended to use the <and -> keys to move the gate in dead man mode when the controller is idle.

TEST SEC.

Enables the safety test output to be activated in the deadman.

ENCODER

Shows the current gate position in form of encoder pulses.

MAX CONS.

Shows the maximum current draw registered during normal maneuvers.

MAX CON LEARN

Shows the maximum current draw registered during a learning maneuver.

DEFAULT VALUES

Resets all configuration to default values (Factory defaults).

MENU MODE

It allows changing the menu system to an advanced version (explained later).

MAINT. LIM.

Allows setting a partial counter value from which the controller will blink the external power LED to indicate maintentenance is needed.
It is possible to have a relay close its contact in this situation by setting it to the HITMTERHPE function.

ENABLE PASSWD

Activates a password prompt to access the configuration menu. The default password is 1234.

CHANGE PASSWD

Allows chaning the password.

LANGUAGE

This allows changing the menu language.

ERROR LOG

The BOX H VF2O controller stores while it is powered the errors that occur during maneuvers. When there are errors to check the board will display an E in each border of the display. Find below a list of possible errors.

FAILED TEST SEG1/SEG2

Safety test has failed for the shown light barrier. Check the wiring and power.

CONFIG ERROR

An error has been detected in the configuration storage memory. If the error persists contact the technical service.

LOG ERROR

An error has been detected in the log storage memory. If the error persists contact the technical service.

OVERCURRENT MOTOR

A current draw higher than the configured limit has been detected.

MOTOR OC IGBT

An overcurrent event has been detected in the power circuit.

MOTOR OC

An overcurrent event has been detected in the hardware shortcircuit detector.

OBSTACLE MOTOR SENS

An obstacle has been detected using the current sensor. If no actual collision happened, reduce 11 SEPSIE.

OBSTACLE MOTOR ENC

An obstacle has been detected using the encoder. If no actual collision happened, reduce $M 1$ SERS. ENL

OBSTACLE MOTOR LIM

An obstacle has been detected because of the configured current limit. If no actual collision happened, increment 111 LIM. FFES

ENCODER STOP

The controller detected that the motor could not spin properly using the encoder. This can happen because the motor itself is locked or because it reached a limit.

LEARNING MISSING

It is mandatory to perform a learning maneuver before operating the gte normally.

SEC HELD

At least one safety is held active before starting the maneuver.

IGBT TEMP TOO HIGH

The power electronics temperature has risen above the safety limit.

LOW BUS VOLTAGE

Thecontroller does not receive enough input voltage or the motor is demanding more power than the controller can output.

INPUTS NOT AVAILAB.

The input reading circuit has stopped working. If the problem persists contact technical service.

ENCODER NOT AVAILAB.

The encoder reading circuit has stopped working. If the problem persists contact technical service.

ERROR ENCODER

Encoder readings are incorrect or unstable. Check the wiring, possible interference and encoder physical state.

ABSOLUTE ENCODER WIRING

The BOX H VF2O control unit can be connected to the absolute encoder of GFA-ELEKTROMATEN, SOMMER and MFZ-OVITOR motors.

It is possible to purchase the control unit with a special shielded cable for this connection. It is recommended to use this cable to avoid operating problems with the encoder. The encoder of these motors is very sensitive to electromagnetic noise; normally these motors can be used without an inverter without problems, but with an inverter it is necessary to take additional precautions for correct operation.

- Move the motor power cable as far away as possible from the encoder in the motor junction box; be careful with the coloured wires that usually go under the encoder as

LIGHT BARRIER SHIELDING

Many light barriers are particularly sensitive to electromagnetic noise generated by inverters or modulating electronics. If the light barrier installed is working correctly when the motor is stopped but fails when in motion, it is being affected by this noise.

To solve this problem, the first thing to do is to make sure that the light barrier is correctly aligned and that the distance is not greater than that specified in the specifications.

these also carry the motor power signal.

- Use the correct size of motor power cable and avoid making loops with it. Excess cable winding generates a lot of electromagnetic interference that affects the encoder and other sensitive devices.
- Install the ferrite included with the panel on the motor power cable as explained on page 4 next to the motor power output of the panel (terminals U, V, W and T).

If the problem persists :

- Supply the light barrier receiver with direct current either from the control panel power supply output (terminals 16 and 17) or from an external power supply.
- Run a short cable from the negative power supply terminal of the photo barrier receiver to the post or metal structure of the gate on which it is mounted, as shown in the figure below.

WARRANTY

This product has undergone a complete TEST during its manufacturing process that guarantees its reliability and proper operation. The manufacturer provides 24 months of warranty to the product from the date printed in the product and against any anomaly that it may present in its appearance or operation.

Any damage caused by third parties, natural causes (flooding, fire, lightning, etc), arising from improper handling or installation, vandalism or any other cause non attributable to the manufacturer will void the warranty.

The warranty only covers repairs or replacement of the damaged device.
Any expenses derived from assembling, travelling, transport, natural wear of parts, etc., and, in general, any expenses that are not part of the repairs or replacement of the damaged element of the system are excluded.

The installer/provider will ask the manufacturer for a RMA number or authorization for transport of the system in warranty. Without this previous requisite, the manufacturer will not be able neither to process nor provide warranty service.

WASTE OF ELECTRICAL AND ELECTRONICDEVICES (WEEE)

In accordance with the European Directive 2012/19/EU about waste electrical and electronic equipment (WEEE), the presence of this symbol (see symbol at the bottom of this text) in the product or in the packaging, means that this article shall not be disposed in local non-classified waste streams.

It is the user's responsibility to dispose this product taking it to a collection point designed for waste recycling of electrical and electronic devices. The separate collection of this product helps optimize the waste sorting and recycling of any recyclable material and also decreases the impact on health and the environment. For more information about the correct wasting of this product, please contact the local authority or the distributor where you acquired this product.

TECHNICAL
CHARACTERISTICS

Power sipply	230 VAC
Maximum load	$2 \mathrm{CV} / 1,5 \mathrm{~kW}$
AC main fuse	10 A
Power outputs	$2 \times 24 \mathrm{VDC} 7 \mathrm{~W}$
Power outputs protection	Rearmable fuses
Maneuver control inputs	8 high insulation optocoupled inputs
analog	
Plug-in cards	Radio and WBAND
LCD display	2×16 characters Chip-on-glass technology - Backlight
Working temperature	$-20^{\circ} \mathrm{C} / 70^{\circ} \mathrm{C}$
Case	ABS
Dimensions	$\mathrm{L} 425 \times$ W213 $\times \mathrm{H} 174 \mathrm{~mm}$
Weight	4000 gr
Watertightness	IP65

CE DECLARATION OF CONFORMITY

The company

Declares:
The product
Manufactured
Under the trademark
For use in

ELSON ELECTRÓNICA, S. A.
Pol. Torrelarragoiti, P6-A3
48170 Zamudio - Vizcaya (SPAIN)
BOX H VF2O motor controller

SMINN

Residential, Commercial or light industry environments.

This device meets the provisions as long as its usage is compliant to what was envisaged, having applied the following regulations.

Directive 2014/30/EU - Electromagnetic compatibility
Directive 2014/35/EU - Low voltage
Directive 2006/42/EC - Machinery
Directive 2011/65/EU - RoHs
Directive 2012/19/EU - WEEE

Zamudio-03.27.2023

José Miguel Blanco Pérez
Chief technical officer

NOTES
\qquad

NOTES
\qquad

NOTES
\qquad

NOTES
\qquad

SMiNV

$c \in \odot$

[^0]:

[^1]: THE INSTRUCTIONS FOR USE OF THIS EQUIPMENT MUST BE GIVEN TO THE USER. IN CASE OF LOSS, THE USER MAY REQUEST A COPY OR DOWNLOAD THEM DIRECTLY FROM THE WEBSITE WWW.SMINN.COM.

